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Calculation of three-dimensional turbulent 
boundary layers 
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The two-dimensional prediction method of Bradshaw, Ferriss & Atwell (1967), 
which was based on the empirical conversion of the turbulent energy equation 
into a ‘transport’ equation for shear stress, is extended to  three-dimensional 
flows satisfying the boundary-layer approximation (which excludes flows near 
bluff obstacles or streamwise corners). Predictions, using exactly the same 
empirical data as in two-dimensional flow, agree to within the likely experimental 
error with a variety of experiments on ‘infinite’ swept wings. 

1. Introduction 
In  a three-dimensional laminar boundary layer, the shear stress is equal in 

magnitude and direction to p times the velocity gradient, whose components in 
the x and z directions are aUlay and 8 Wpy,  where y is the direction normal to the 
surface. In a turbulent flow the Reynolds shear stress, whose components in the 
x and z directions are - p G  and - p G ,  is not simply related to the velocity 
gradient either in magnitude or direction: the reasons are discussed in 5 2. 

However, existing prediction methods for three-dimensional turbulent 
boundary layers nearly all assume, explicitly or implicitly, that the shear stress, 
or the shear stress profile at given x, z, is uniquely related to the velocity gradient 
or the velocity profile. One of the few straightforward and explicit examples is the 
entrainment method of Cumpsty C% Head (1967a, b )  in which the dimensionless 
entrainment rate is assumed to be the same function of the streamwise velocity- 
profile shape as in two dimensions. The method of Nash (1969) is a hybrid: the 
shear stress is assumed to have the same direction as the velocity gradient 
(‘isotropic eddy viscosity’) but its magnitude is predicted from an empirical 
‘transport’ equation (an equation for the rate of change of shear stress along a 
mean streamline) similar to that derived for two-dimensional flow by Bradshaw 
et al. (1967). Since the difference between the directions of the velocity-gradient 
and shear-stress vectors seems to be more noticeable in practice than the difference 
in their relative magnitude, it is advisable to derive ‘transport ’ equations for 
both the magnitude and direction of the shear stress or, equivalently, for both 
the components - puV and - pvW. 

The empirical transport equation of Bradshaw et al. was derived from the 
(exact) turbulent energy equation, which is better documented experimentally 
than the (exact) transport equation for - UV (equation (l), below). However, the 

t Present address: Department of Aeronautics, Imperial College, London S.W. 7 
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empirical equation, once derived, can equally well be regarded as an empirical 
approximation to the exact equation for - UV: to extend the prediction method 
to three-dimensional flow we can simply make the analogous approximation to 
the exact --zIw equation (equation (2), below) and this is done in the present 
paper. The three empirical functions used in the prediction method nominally 
become functions of the shear stress vector, but only one of the three is likely to 
depend appreciably on the direction of the shear stress. The present predictions 
for three-dimensional flow in a variety of pressure gradients use the same empirical 
data as the two-dimensional method, data taken solely from two-dimensional 
flow and almost exclusively from constant-pressure flow. The essential justifica- 
tion for this is the plausible hypothesis that moderate three-dimensionality of the 
mean flow should not materially affect the scalar properties of the turbulence 
because turbulence is aZways three-dimensional: the practical justification is 
that the agreement with experiment is generally good. 

‘Moderate three-dimensionality ’ does not imply a restriction to small cross- 
flow (i.e. a small angle between the streamlines in the free stream and at  the 
surface): it implies only that the change in direction of the velocity gradient over 
a vertical distance equal to a typical eddy wavelength shall be small, and this 
restriction should be satisfied by most swept-wing boundary layers. The only 
flows specifically excluded, from this as from all other ‘ boundary-layer ’ methods, 
are those for which the boundary-layer approximation is not satisfied. In three- 
dimensional flow the boundary-layer approximation requires that velocity 
gradients normal to the surface shall be much larger than velocity gradients 
parallel to the surface, and that the radii of curvature of the surface shall be 
much larger than the boundary-layer thickness. Unfortunately this excludes 
flows of practical interest, near wing tips, wing-body junctions and other nearly 
streamwise corners or separation lines, as well as blunt three-dimensional 
obstacles in initially two-dimensional boundary layers. Corner flows, like flows 
in non-circular ducts, are driven by normal-stress gradients as well as shear-stress 
gradients, so that additional Reynolds stress transport equations are needed: 
we have no immediate hope of an extension of the method to these flows, although 
Donaldson, Sullivan & Rosenbaum (1 970) have proposed transport equations 
for the three normal stresses (and the shear stress) in two-dimensional flow. In 
flows round bluff obstacles, stress gradients of any kind are small compared with 
pressure gradients, so that Bernoulli’s equation applies, except very near the 
surface where local-equilibrium assumptions such as the mixing-length formula 
can, as usual, be used to predict the shear stress: it follows that assumptions for 
the Reynolds stresses in the outer layer cannot usefully be checked by comparison 
of mean-$ow predictions with experiments on bluff obstacles, although direct 
Reynolds stress measurements in such flows would afford a very searching test 
of turbulence models (see Q 8.3). 

In $ 2  of this paper we derive two differential equations for the two components 
of shear stress by logical extensions of the arguments used in two-dimensional 
How. In  3 3 the boundary conditions are discussed, and in Q 5 we outline the 
method of solution used in the calculations presented in Q 8. Sections 4, and 6 and 7 
deal with special cases and specific difficulties. 
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2. Shear stress transport equations 
Some of the material in this section first appeared in a short paper in Kline et al. 

(1 969) : a similar analysis has been given semi-independently by Wesseling (1 969). 
The following equations for the components of the turbulent shear-stress 

vector T = -puV, -p.W in the xy,  yz planes, where x, y and z are rectangular 
Cartesian co-ordinates, not streamline co-ordinates, can be derived from the 
incompressible Navier-Stokes equations; like the Navier-Stokes equations they 
give only the rate of change of the desired quantity along a mean streamline or 
equivalently the rate at which the quantity is being transported out of a unit 
control volume-hence the name ‘ transport equations ’ : 

~~ 

- v(uV2v + VV22L), ( I )  
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The equations are exact except that the boundary-layer approximation has been 
used. They show that if the velocity gradient changes, only DrlDt, and not 7 ,  

changes at  once (Townsend 1956). 
Since the viscous-dependent part of the turbulence is isotropic except in and 

near the viscous sublayer, the viscous terms in (1) and ( 2 )  are negligible elsewhere 
(the terms like vuV2u in the analogous equations for the normal stresses represent 
dissipation). The first term on the right of each equation represents generation 
of shear stress by the mean velocity gradient, and the third represents ‘diffusion’ 
or turbulent transport of shear stress normal to the surface. The second term, 
the mean product of the fluctuating pressure p‘ and the fluctuating rate of strain 
(hereafter called the ‘pressure-strain term ’ for brevity) represents the ‘iso- 
tropizing ’ t effect of pressure fluctuations : similar terms exchange energy between 
the normal-stress components, but shear stress is not an energy quantity and is 
not conserved in the strict sense of the word, so that the shear stress that is 
destroyed by the pressure-strain term does not go anywhere. Since we cannot at 
present measure pressure fluctuations within the flow with any assurance of 
accuracy, we know very little about the pressure-strain term. As the generation 
term is straightforward and the diffusion term usually small enough for crude 
approximations to suffice, the problem of deriving tractable shear-stress equa- 
tions from equations ( 1 )  and ( 2 )  reduces to the problem of finding out how the 
pressure-strain term behaves. 

Now, the shear stress transport equation used in the two-dimensional method 
of Bradshaw et al. can be regarded as an empirical modification of (1). It is 

- 

D(-uV) - au -- - 2a, ( - uv ay - energy dissipation -energy diffusion 
Dt (3) 

t An unlovely word, formed by analogy with ‘homogenize’: suggestions for a more 
euphonious alternative are invited. 
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where a, is defined as -uV/(u2+v2+w2) and is taken to be a constant, 0.15 (for 
a discussion, see Bradshaw 1967). The left-hand sides of ( 1 )  and (3) are identical 
and we may expect that, if the derivation of (3) is close to the truth, the 'diffusion' 
term in (1)  will be equal to the 'diffusion' term in (3), because they represent the 
same process of turbulent transport in the y direction. Subtracting (3) from (1 ) )  
neglecting the viscous terms in the latter, gives 

_ _ _  

p' au av - au 
P a.Y ax a Y  
-(-+-j = (u + 2a1 uv) - + 2a,. (energy dissipation), (4) 

so this is what the assumptions of Bradshaw et al., leading to (3)) imply for the 
pressure-strain term in (1). It is the sum of a 'negative production', directly 
opposing the generation of shear stress by the termGaU/ay in ( l ) ,  and of a drect 
destruction of shear stress, analogous to energy dissipation. This dual behaviour 
of the pressure-strain term is plausible when one notes that the Poisson equation 
for the fluctuating pressure in a two-dimensional boundary layer is 

vzP' au av ayUiuj - U Z )  
(5) ~- - 2-.-+ 

P ay ax axi axj 

(the second term being summed over all components and all directions) which 
has obvious similarities with (4). Equation (5) has to be integrated over all space 
to get p' but the part of p 1  that correlates with the rate of strain at a given point 
will presumably be the part generated near that point so that the local value of 
alJ/ay will appear in the pressure-strain term. Crow (1968) has calculated the 
part of the pressure-strain term that depends on aU/2y, for the special case of a 
homogeneous mean shear suddenly applied to initially isotropic turbulence. 
Defining a3 as (3+ 2ulE)/v", and a length L as (-=)$/(energy dissipation), 
(4) becomes 

- au 

We expect u3 to be nearly constant for the same reasons as a,. 

make about the pressure-strain term, now a vector with components 
In a three-dimensional flow, the simplest and most obvious assumption to 

is that it is again the sum of a direct destruction of shear stress (a vectjor having 
the same direction as the shear stress T which now has components - puV, - p G )  
and of a 'negative production' (a vector having the same direction as the velocity 
gradient aU/ay which now has components aU/ay, aW/ay). Following the general 
hypothesis that scalar properties of the turbulence are unaltered by moderate 
three-dimensionality, we assume that a,,a, and L will have the same values as in 
two dimensions if defined as 171 /p@ + v2 + G), (3- 2a, 171 /p)/v" and (17) /p)3/ 
(energy dissipation)-essentially we assume that (171 /p)B is a typical velocity 
scale for the turbulence. Then the vector pressure-strain term becomes 
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the second term in this expression being avector of magnitude 2a1( ( T I  /p)3/L having 
the same direction as T. Writing T~ for -pi% and T~ for - pvW, the pressure-strain 
terms in (1) and (2 )  become 

and 

Substituting in (1) and (2 )  we obtain 

_ _ _  
Note that a, = ) T ~ / ~ ( U ~ + V ~ +  w2) and that a3 does not appear as such. These 
equations naturally reduce, in two-dimensional flow, to equation (3). t 

The magnitude of the 'diffusion ' vector in (7)  and (8) should be nearly the same 
as in two dimensions but its direction will depend on some functional of the shear- 
stress direction throughout the boundary layer (although it is unlikely that large 
changes in shear stress direction-or magnitude-near the surface will have 
much effect on the outer layer). This is the only extra piece of experimental 
information that we need to extend the calculation method of Bradshaw et al. to 
three dimensions (though confirmation of the above analysis is obviously 
desirable). In  the calculations presented here we have simply assumed that 
the quantity whose gradient is the diffusion vector has the same direction as the 
local shear stress and written it as 2a1G I ~ ~ ~ ~ / p  11 ~ / p  where G is approximated by 
1 ~ ~ ~ ~ / p U : 1 ' J ' 5  times a scalar function of y/6,  as in two-dimensional flow. This 
assumption is plausible physically, convenient numerically, and almost certainly 
accurate enough for wing-type boundary layers because the main influence of G 
is that it determines the rate of entrainment of fluid at the edge of the boundary 
layer: entrainment is a scalar so that only the magnitude of G is really important. 
The final equations for the rate of change of the shear stress components along 
a mean streamline now become 

t Before devising the present argument we derived equations similar to ( 7 )  and (8) solely 
from the three-dimensional form of the turbulent energy equation. The argument for the 
' dissipation' terms (those containing L )  was that energy dissipation would reduce the 
magnitude OFT without altering its direction: the result is the same as in equations ( 7 )  and (8). 
The production term in the turbulent energy equation is ~ . a U / a y ,  a scalar, and it was 
argued that the shear stress associated with this newly-produced energy should be in the 
direction of the velocity gradient: the resulting ' production' term is (COSI!?) times the 
' production' term in ( 7 )  and (8 ) ,  where 0 is the angle between z and aUjay. Usually 0 will be 
small: it is assumed zero in the mixing length or eddy viscosity approaches. Therefore we 
can equate its cosine to unity and reconcile the two derivations of (7) and (8). 
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In  the more general case G would be replaced by G, in (9) and Gz in (10). 

direction of the shear stress, we get 
If we rewrite (9) and (10) to give us the rates of change of the magnitude and 

The first equation is exactly the scalar form of the turbulent energy equation 
with the same definitions of al, L and G as in two dimensions: the second equation 
shows that even with a scalar function for G a change in shear stress direction with 
y will produce a change of shear stress direction with distance along a streamline. 
The ‘dissipation ’ term containing L does not affect the shear stress direction, 
whereas the rate of change of shear stress direction caused by the ‘production’ 
term is proportional to the sine of the angle between the shear stress vector and 
the velocity gradient vector. 

Equations (9) and (10) are to be solved with the momentum equations 

DU 1 ap 1 aTz 

Dt p a x  p ay 
-+---, - -  - -- 

au av aw 
ax ay a2 

and the continuity equation 
-+-+- = 0. 

In compressible flow, a few extra terms appear, but the character of the equations 
is the same. 

As in two-dimensional flow we expect that, near the surface but outside the 
viscous sublayer, the rate of change of shear stress along a streamline, and the 
diffusion terms, will become small compared with the other two terms: in this 
case equations (9) and (10) reduce to 

--- I=( au = *T,/P 

P aY L ’  

P aY -Id 7’ 
-_ I‘CI aw = ( J  =*&P 

so that near the surface the direction of the shear stress is the same as the direction 
of the mean velocity gradient and its magnitude is 

171 = (T:+T$ = pL2((au/ay)Z+(aW/ay)2) = pL21au/ay12. 

Therefore, as in two dimensions, the shear stress equations reduce to the ‘mixing 
length’ formula near the surface. In the outer part of the flow the directions of 
the velocity and shear stress do not in general coincide and the present method is 
virtually certain to be an improvement on the ‘mixing length’ or ‘eddy viscosity ’ 
assumption that the directions coincide everywhere. 
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3. Boundary conditions 
The components of the external stream velocity, U, and W,, are assumed given: 

it has been pointed out by Kovasznay & Hall (1967) that since the external 
stream is supposed to be irrotationa1aUJa.z - aW,/ax must be zero so that U, and 
W, cannot be chosen independently. The outer boundary condition, at y = 8, is 
U --f L:, W + W,, r,, r2: -+ 0: the limiting direction of the shear stress, rz/r,, is not, 
and does not have to  be, prescribed. Near the surface it is convenient to match the 
calculations to the velocity profile given by the mixing length formula: as in two 
dimensions, it is necessary to estimate the shear stress gradient(s) between the sur- 
face and the matching point and, as in two dimensions, the shear stress gradient 
will not be equal to the pressure gradient because of the acceleration terms, 
which we must therefore estimate. The assumption we have made for this latter 
purpose in two dimensions, that the velocity profile follows a one-fifth power law 
between the surface and the matching point, should suffice for both the velocity 
components in three dimensions. It is not accurate for the component normal to 
the wall shear stress vector, but, at least in the case of an infinite swept wing, where 
8pja.z = 0,  this is important only near separation (7, -+ r2, r, -+ 0 )  and there the U 
component acceleration terms are small near the surface since the U component 
itself is small. Therefore the numerical accuracy for the infinite swept wing should 
be, and is, nearly as good as in two dimensions except very close to separation. 

We have assumed that r,, r, and r vary linearly between values at the wall, 
y = 0, and at  the matching point, y = y( 1 ) :  since I T /  = (rz + r;)i the three assump- 
tions are not exactly compatible but the error involved should be no larger than 
the error already incurred by assuming linear variations of r, and rz. We write 
7, = r,, + az y ,  r, = T,, + a, y and T = r, + ay,  where a, the magnitude of u, is 
taken as ( (r;( l )  + 7 i ( l ) ) i - r W ) / y ( l )  (which gives the best accuracy when either 
a, or a, is large, the cases when these stress gradients are most likely to be 
important). The mixing length formulae then become 

Integrating, and requiring compatibility with the logarithmic law for small a,, 
az and a, we obtain 

where the last term can be written 

and a similar expression for W .  Strictly the additive constant of integration A ,  
representing the velocity change across the viscous sublayer, should be a vector 
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function of the dimensionless shear stress gradient near the surface, avpi/&. 
I n  two-dimensional flow the variation of A with shear stress gradient seems to be 
negligible, except near separation where A is in any case small compared to the 
other terms in the two-dimensional version of (16). Mainly owing to uncertainty 
in surface shear stress measurement, existing data on the inner layer in three- 
dimensional flow are insufficient t o  document the variation of A ,  but there is no 
reason to  expect thevariation to be largerthan in two-dimensional flow for a given 
shear stress gradient. Again, there is no reason to expect the shear stress gradient 
near the surface to be larger than in two-dimensional flow: it can scarcely be 
larger than the pressure gradient and the only case in which pressure gradients 
are larger in three-dimensional flow than in two dimensions is when the radius of 
curvature of the external streamlines in plan view is not very large compared to 
the boundary-layer thickness-which implies violation of the boundary-layer 
approximation anyway. Therefore we have taken A = 2.0, as in two dimensions, 
in the calculations presented here: K is taken as 0.40. 

4. Two points of uncertainty 
4.1. Status of the boundary-layer approximation 

This approximation, as used above, implies the neglect of spanwise and chordwise 
gradients of stress and velocity in comparison with gradients normal to the 
surface, and clearly breaks down near wing-body junctions and wing tips as well 
i ts  near separation lines, but we expect it to be valid as long as the free-stream 
velocity or the inner boundary condition do not change appreciably over distances 
of order 6. A special deduction from this approximation is that the boundary layer 
on a flat plate in zero pressure gradient should be unaltered by leading edge sweep 
as long as the co-tangent of the sweep angle is much more than d6ldx. Laminar 
boundary layers are certainly unaltered, but in that case the so-called 'inde- 
pendence ' principle also holds and the motion normal to  the generators on any 
infinite yawed wing is independent of that parallel to the generators: in turbulent 
flow the two principles cannot hold simultaneously and there has been some con- 
troversy in the past as to  which, if either, is true. According to the present model 
equations the independence principle certainly does not hold because rz appears 
in the equation for 7, (via the factor 171 = (7: + T E ) ~  if not via the vector character 
of a). The experiments of Ashkenas & Riddell (1955) who measured skin friction 
on a flat plate a t  various sweep angles, support this. However, Ashkenas & 
Riddell's values of cr, derived from measurements of the rate of growth of 
momentum thickness, d&,/dx, do depend on sweep angle, contrary to the above 
deduction from the boundary-layer approximation and the present model 
equations. Ashkenas (1958) later re-ran the experiment and found almost the 
same cf at 0" and 45" sweep, although this is not explicitly stated in Ashkenas's 
report and the conclusion of the earlier report seems to have gained some accept- 
ance. Figure 1 shows cr values from the later report: it is seen that values 
obtained from dS,/dx are independent of sweep to  within the likely accuracy of 
measurement but are about 7 yo higher than Coles's (1962) formula, which could 
be explained by lateral convergence of the flow, due to growth of the boundary 
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layers on the side walls of the wind tunnel ; cf values obtained by Ashkenas ( 1958) 
from the logarithmic law agree very well with Coles's formula. Unless the 
logarithmic law changes with sweep in just such a manner as to camouflage a 
trend in cf, we may take figure 1 as a justification of the boundary-layer approxi- 
mation as stated at  the beginning of this section. Some small effects of sweep on 
flow directions and other quantities noted by Ashkenas can probably be attri- 
buted to cross-flow originating at  the rounded leading edge of the test plate. 

0.0024 

0.0022 

0.0018 

0*0016 

1000 21 

FIGURE 1. The results of Ashkenas (1958) on a flat plate. 0, no leading edge sweep ; , 45" 
sweep (plain symbols, cr from logarithmic law; flagged symbols, cf  from momentum integral). 
-, correlation of Coles (1962) for two-dimensional flow. 

In  some flows, the streamlines may converge or diverge strongly in plan view, 
and even if the letter of the boundary-layer approximation is not violated the 
results of Keffer (1 965, 1967) in a wake suggest that divergence, if not conver- 
gence, may have some dynamic effect on the turbulence (the kinematic effect on 
the mean velocity components is easy to represent in a calculation method, 
whether for two-dimensional, axisymmetric or three-dimensional flow: see 3 6). 
The only real evidence that the dynamic effect is negligible in typical boundary 
layers comes from the strongly divergent flow at the leading edge of a swept wing, 
whose properties can be predicted with reasonable accuracy by methods which 
ignore the effects of divergence on the turbulence structure (see Cumpsty k 
Head (1967 b) and 0 7 of the present paper). The measurements of Winter, Rotta & 
Smith (1968) on a waisted body of revolution were undertaken partly to investi- 
gate convergence and divergence effects, but the results were complicated by the 
presence of large longitudinal curvature and large ratios of boundary-layer 
thickness to cross-sectional radius of curvature. 
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4.2. The effect of longitudinal mean vorticity 

Kuettner (1968), and Angell, Pack & Dickson (1968), have shown that longi- 
tudinal secondary vorticity, generated by turning a shear flow in its own plane, 
may lead to  large quasi-steady longitudinal vortices in the Earth’s atmosphere. 
Buoyancy effects (either stable or unstable) may be essential, in which case 
similar effects will not arise in engineering boundary layers unless the surface 
curvature is large. However, the turbulence structure might be appreciably 
affected if the shear stress vector is not exactly normal to  the mean vorticity 
vector (that is, if the model equations (9) and (10) do not reduce to  the mixing 
length formulae) and such an effect is not explicitly allowed for in (9) and (10). 
(In the original equations (1) and (2) ,  i t  would appear in the pressure-strain and 
diffusion terms.) We may find, when more detailed explorations of the turbulence 
structure of three-dimensional flows are made, that  the empirical functions a,, L 
and G, which appear explicitly in (9) and (lo), and the function a3 which appears 
implicitly, are functions of the local or average angle between the shear stress and 
mean vorticity. At present there is no evidence: the curious behaviour of the shear 
stress measurements in Johnston’s experiment ( 5  8) could just possibly be blamed 
on an effect like this, but there is no indication that steady vortices formed. 

5. Hyperbolic character of the equations and method of solution 
In  two dimensions the model equations (namely (9), (13) and (15) with the 

terms in neglected) are hyperbolic, the number of characteristics (equal to 
the number of variables) being three. One characteristic is vertical and the 
corresponding ordinary differential equation, with derivatives along the charac- 
teristic (the y axis) only, is obtained by substituting from (15) for aU/ax in (13). 
The other two characteristics are inclined to  the x axis a t  angles y given by 

As g+6, tan y-f V / U ,  [V + 2 a , G ( ~ ~ , , / p ) i ] / U :  that is, one inclined characteristic 
coincides with the mean streamline; the other characteristic coincides approxi- 
mately with the edge of the boundary layer. The ordinary differential equations 
along these characteristics are given by Bradshaw et al. 

I n  three dimensions, substituting for aU/ax as before gives a differential 
equation with derivatives in the y and z directions, so that the vertical charac- 
teristic line is replaced by the characteristic surface x = constant (in the special 
case of an infinite swept wing where a/& = 0,  the vertical characteristic line is 
recovered). The inclined characteristic lines, now four in number, remain lines 
dong which ordinary differential equations are satisfied, in contrast to  the 
behaviour of general hyperbolic equations in three dimensions, in which charac- 
teristic surfaces occur and in which the compatibility equations all contain 
derivatives in two directions : in the general case (for example, three-dimensional 
inviscid supersonic flow), the envelope of a set of characteristic surfaces is the 
characteristic conoid, the curve of contact of a given surface with the conoid 
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being called a bicharacteristic, but in the present case the conoids shrink to lines 
(which are obviously also the bicharacteristics) having all the properties of 
ordinary (two-dimensional) characteristics. The angles of inclination of the 
quasi-characteristic lines to the axes are most simply expressed by saying that 
the components of the velocity of propagation of a disturbance are ( U ,  V‘, W )  
where V‘ takes the four values 

V +  (a,G,r~,,+ (a~G~.rmax+2a11r1)a)/ro~, 

V +  (a1Gz7kax k (a?GE7max+ 2al/r1)4)/p&. 

The reason for the degeneracy of the characteristics is that, in accordance with 
the boundary-layer approximation, we neglect turbulent transport in the x and z 
directions and take account of it only in the y direction. The actual rates of 
turbulent transport of mass, momentum or energy in the three directions are of 
the same order but the dimension of the boundary layer in the y direction is so 
much smaller than the size of the body that only gradients in this direction need 
be considered. Clearly this argument breaks down near streamwise corners and 
edges, just as the neglect of 2-wise momentum transport by normal stresses 
breaks down near separation. 

The four values of V‘ coincide in pairs if G, = G,: we have chosen G, = Gz 
throughout the boundary layer in the present cahlations for want of better 
information, but i t  is fairly certain that G, and Gz are both very small in the inner 
layer so that near-coincidence will occur there in any case. 

This coincidence of the characteristics makes it impossible to use the ‘method 
of characteristics ’ directly because that method requires as many distinct com- 
patibility equations as there are variables. However, since the coupling between 
the U ,  rx and W ,  rz fields does not involve derivatives and is in any case very weak, 
occurring only by virtue of the presence of 171 = (r: + 7 ? 9  in both equations (9) 
and (lo), we can use the method of characteristics separately on U ,  7, and Tir, 7,, 

taking the other component of (71 as known and then, if necessary, update the 
value of 171 and iterate to improve the numerical accuracy. This technique is not 
very accurate near a spanwise separation line, where T,/T,  -+ 00. In  the case ofthe 
infinite swept wing (a swept wing of ‘infinite’ aspect ratio) where only one span- 
wise station need be calculated, the only major changes from the two-dimensional 
program are that the main calculation blocks for U and r, are repeated for IV and 
rz (equality of Gz and Gz means that the blocks are almost identical). In  the fully 
three-dimensional case, two-dimensional interpolation in the y, x plane replaces 
one-dimensional interpolation in they direction and it may be that a rectangular- 
mesh implicit method such as that of Ferriss (1969) would be more efficient than 
the method of characteristics. It would certainly enable a variable y step to be used 
efficiently so that the first of n points could be taken at the edge of the sublayer 
instead of a t  y = S/n: this would improve the accuracy of satisfying the boundary 
condition, especially in rapidly changing flows. The quasi-characteristic method 
used for the calculations presented here seems to be adequate for all but rapidly 
changing flows. The cumulative numerical error in the momentum thickness is 
shown in figure 3 as an example of the accuracy in a very severe case. 

The behaviour of the characteristics is discussed in more detail by Martin & 
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Ferriss (1969)) principally for the case mentioned in $ 2  where the cos 0 term is 
retained and the characteristics do not coincide in pairs unless G, = G, = 0; in this 
case another modificationof the method of characteristics can be used for solution. 

6. The present computer program 
The program developed at NPL, using the above-mentioned quasi-charac- 

teristic method, is basically for the case of incompressible flow over an ‘infinite’ 
swept wing, with the isobars everywhere parallel to the generators. This is less 
restrictive than it sounds because (i) the infinite swept wing is an  adequately 
general test case for the turbulence assumptions; (ii) an allowance can be made 
for moderate isobar convergence to  extend the calculations to tapered swept 
wings and similar practical cases; (iii) an  extension to  compressible flow can be 
made on the lines of Bradshaw & Ferriss (1971). 

The infinite swept wing is a general test case, except for the possibility of 
dynamic effects of streamline convergence, because no mean gradients with 
respect to z appear on the right-hand sides of (1) to  (12): the operator D/Dt on 
the left-hand sides is an abbreviation for a/at + Ua/ax + Va/ay + Wa/ax but the 
character ofthe solution is unaltered by the relative size of the four terms. Indeed, 
demonstration calculations have been made for unsteady flow over an infinite 
plate, using the same turbulence assumptions as in steady flow (Bradshaw 1969a). 
The numerical problem of dealing with more than two independent variables is 
not trivial, and since the only suitable test data are for flows over infinite swept 
wings we programmed this case first. Nash (1969) has programmed his isotropic- 
eddy-viscosity version of the present method for fully three-dimensional flow and 
Wesseling (private communication) is programming the general case offlow over 
a surface with compound curvature. 

The NPL infinite wing program, like the various two-dimensional programs, 
contains an allowance in the continuity equation for spanwise convergence or 
divergence of the flow. This was originally inserted to  permit useful comparisons 
with nominally two-dimensional wind tunnel data, in which the flow converges in 
plan view because of the growth of boundary layers on the side walls, and with 
measurements on bodies of revolution. However, the same procedure can be 
used as a first approximation in three-dimensional flow, treating a given chord- 
wise section of a tapered swept wing as an infinite swept wing with the same 
chordwise pressure distribution and the same spanwise convergence of the 
external streamlines: this is the ‘axisymmetric analogy’ of Eichelbrenner & 
Oudart (1955), although the present use of i t  to  cope with small departures from 
infinite swept wing conditions is more advanced than its original application to  
small departures from two-dimensional flow. 

Fortran listings and cards for the NPL program, together with running 
instructions, are available from the author a t  Imperial College: the running time 
is about half as long again as the two-dimensional method (the calculation of 
$ 8-2 took 10 see on a CDC 6600, which has a multiplication time of 1 p e c :  the 
cost of central processor time was 2s. 3d. ) .  I n  the general case the running time 
would be proportional to the number of spanwise stations. 
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7. Flow at the attachment line 
The flow at the leading edge attachment line is in the z (spanwise) direction, 

T, and U both being zero, so that the method of characteristics will not march in 
the x direction. As with other methods of solution, the momentum and shear 
stress equatiorls for U and r, must be differentiated with respect to x (measured 
around the surface, normal to the leading edge). For the simplest case of the 
infinite swept wing (with 3/82 = 0) we easily obtain equations for aU/ax = S and 
ar,.pax = T so that the set to be solved is: 

x-momentum differentiated, 

rz differentiated, 

x-momentum, 

s + a v / a y  = 0. (22) continuity, 

These are ordinary differential equations, containing derivatives only in the 
y direction (aU',/ax being a known constant). Equations (20) and (21) for the flow 
along the leading edge depend on (1  8) and (19) for the flow normal to the leading 
edge only via (22): the flow along the leading edge is not the same as the quasi- 
radial flow on a tunnel floor with diverging sidewalls, or on a body of revolution, 
because aU/& is not simply W / ( z  - zo) where xo is the apparent origin of the radial 
flow: if we dejine a quantity zo by aU/ax = W/(z-x , ) ,  it is a function of y in the 
present case but a constant in quasi-radial flow. 

We can use the logarithmic law 

or the W-component version of (l6),  as the boundary condition on W and r, at a 
point just outside the viscous sublayer (y = 0 + ). rzw is the value of r, at y = 0 + . 
If we assume that the flow in the viscous sublayer is quasi-radial so that 
U / W  = r,/r,, the boundary condition on S derived from the simplo logarithmic 
law is 

at y = 0 +  , with T = T,. At the outer edge of the boundary layer S + dU,/dx, 
T + 0, W --f W, (known) and T~ -+ 0. If we make all velocities dimensionless with 
W,, all shear stresses dimensionless with pWZ, and all lengths dimensionless with 
v/W, then the equations remain as written, except that v = 1 in the logarithmic 
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law and (dU,/dx)2 becomes u2(dU,ldx)2/W;1- which is 1lC; in the notation of 
Cumpsty & Head (19673). The outer boundary conditions become S - t  1/C*, 
T -+ 0, W -+ 1, rZ 3 0: the value of transformed y (equals lqy/u)  is large at  the 
edge of the boundary layer (varying from about 3000 to 10000 as C, varies from 
lo5 to 5 x lo5). ‘y = O +  ’ corresponds to ( ~ , / p ) * y / u  .rr 30 or ‘transformed y’ 
fi 500 but can be taken much nearer the surface for arithmetical convenience 
without causing appreciable errors outside the sublayer. 

8. Test cases 
8.1. 45” ‘inJinite’ swept wing (Bradshaw & Terrell 1960) 

This experiment was set up especially as a test case for the assumptions made in 
the outer layer: it can be regarded as a three-dimensional version of the ‘relaxing’ 
flow described by Bradshaw & Ferriss (1965) although the initial retarded flow 
was simply that at the trailing edge of an aerofoil-shaped fairing on the froiit of 
a flat plate, and not an equilibrium flow as in the two-dimensional case. The 
thickness of the fairing, and therefore the pressure gradient, was severely 
restricted by the 9 in. height of the tunnel, but a cross-flow angle of about 7.5” 
was attained at the ‘trailing edge’, at which the measurements started. The 
pressure gradient is negligible downstream of the ‘trailing edge’ so that the 
cross-flow decays, and the streamwise flow returns to constant-pressure ecjui- 
librium, solely under the action of the shear stress. Prediction of the oross-flow 
decay is therefore a good test of the assumptions in the calculation method: since 
the cross-flow is small, the agreement between calculation and experiment for the 
streamwise flow is essentially a test of the two-dimensional method (and of the 
experimental accuracy), but the accuracy of prediction of the cross-flow is not 
likely to depend on its magnitude unless the  cross-flow is very large, so that the 
only disadvantage of small cross-flow is that measurements of cross-stream 
components of velocity and shear stress are difficult. 

Comparisons between theory and experiment are shown in figure 2. Note that 
in figures 2 to 4 results are plotted against distance measured along the tunnel 
centre-line and not normal to the generators: with 45’ sweep, the ratio is simply 
4 2 ;  axial distance is more meaningful for flows that begin, or end, as two- 
dimensional. Considering that the cross-stream shear stress is small and that 
what is actually measured is the component normal to the velocity vector, the 
agreement between calculated and measured shear stress is satisfactory, the 
trend of difference between the shear stress direction and the velocity gradient 
direction being well predicted: the detailed discrepancies are largely experi- 
mental scatter. The cross-flow angle at the surface, which is the quantity of most 
practical interest, is predicted very accurately. The cross-flow profiles tend to a 
self-preserving state. 

The scatter in direction of the velocity gradient in the first few calculated 
profiles is a legacy of the input profile: in the computer data output, gradients 
are found by simple differences and the scatter on the input profile is enormous 
(figure 2 (c)) although the velocity profiles are of respectable accuracy; in 
reducing the experimental results, smoothing was introduced. 
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z', distance from L.E. along tunnel centre-line, in. 

0.003 

0.002 

0" 

0.001 

I 
D D O  

o n  

a 

x', distance from L.E. along tunnel centre-line, in. 

yin. 
FIGURE 2. For legend see p. 433. 
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8.2. 45" ' inJinite ' swept plate with externally-imposed pressure 
gradient (Etheridge 1970) 

The pressure gradient, imposed by a swept cylinder above the plate, was at first 
strongly favourable and then moderately adverse. Values of ( @ / T i j ) .  dp/dx 
approached 0.01 so that reverse transition (Pate1 & Head 1968; Bradshaw 1969b) 
may have been imminent. However, the predictions of surface cross-flow angle and 
momentum thickness shown in figure 3 are quite satisfactory (in this figure, HI,  
is the streamwise shape parameter, i.e. the ratio of the streamwise displacement 
thickness S,, to the streamwise momentum thickness ell, and p is the surface 

0.2 0.4 0.6 0.8 1 .o 1.2 1.4 

y in. 

y in. 

FIQURE 2. For legend see facing page, 
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y in. 

0.2 ( 0.6 0.8 1 .o 1.2 1.4 1.6 

y in. 

FIGURE 2. 45’ ‘infinite’ swept wing (Bradshaw & Terrell 1969). Calculations start at 
x‘ = 73 in., where the boundary-layer thickness is about 1-1 in. (a)  Surface cross-flow angle 
(direction of surface shear stress) with respect to tunnel axis. 0, experiment, -, calcula- 
tion. ( b )  Magnitude of surface shear stress. 0, experiment; -, calculation. (c) Yaw angles, 
z’ = 73in. (experiment and calculation input). 0, direction of velocity; 0, direction of 
shear stress; A, direction of velocity gradient (by simple differences); A, velocity gradient 
(smoothed). (d) Experimental yaw angles, x’ = 83in. ( e )  Calculated yaw angles, z‘ = 83in. 
(f) Experimental yaw angles, x‘ = 93in. (9) Calculated yaw angles,%’ = 93in. 

28 F L P  46 
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cross-flow angle measured with respect to the local free-stream direction). 
Predictions of H,, are consistently low (even for the input profile, so that numerical 
errors in evaluating H,, from the velocity profile are at least partly to blame). 
These comparisons show that the present calculation method is capable of 

1.6 - I 
X 

1 

-8 

I 

3.02 

@08 t 

- 

___----- 
I 

Distance from L.E. along tunnel centre-line, in. 

FIGURE 3.45" ' infinite' swept wing (Etheridge 1970). Symbols: experiment. ---, calcula- 
tion; -----, cumulative numerical error in OI1 deduced from the momentum integral 
equation. 

handling rapid changes of cross-flow direction-the resulting ' cross-over ' profiles, 
with a reversal of yaw angle with respect to the free stream, do not present any 
difficulties in finite difference 'field' methods although they are difficult to 
represent in integral methods. The rapid change in pressure gradient led to some 
numerical error in (see figure 3) : errors are usually much less than this. 
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8.3. 45” ‘ in ,ni te  ’ swept forward-facing step (Johnston 1970) 

This experiment was set up to check the limits of accuracy of the ‘mixing 
length’ formula near the surface: the step height was 2in., the boundary-layer 
thickness at x = - 17 in., near the start of the pressure gradient, being 2.1 in. 
The flow in the outer part of this strongly retarded boundary layer depends far 
more on the pressure gradient than on the shear stress gradient. From the point 
of view of justificatioii of the need for rake equations for shear stress, the most 
interesting result of the experiment was the appearance of large angles of lag 
between the shear stress and the velocity gradient in the outer layer, although 
such large angles will occur only in flows driven by strong pressure gradients, 
where, as implied above, the behaviour of the shear stress is not very important. 
In  Johnson’s experiment the pressure varied considerably in the y direction, so 
we cannot expect good quantitative agreement between experiment and the 
calculation, which was done using the surface pressure (in fact the prediction of 
c, and surface streamline angle is quite good: as was shown by Bradshaw (1968), 
the hyperbolic nature of the present model of turbulence permits prediction of c, 
up to separation, given the surface pressure distribution and initial conditions, 
despite the failure of the boundary-layer approximation, and probably the 
turbulence model, in the outer part of the flow). The main point of the com- 
parisons in figure 4 is that the experiment confirms that the directions of shear 
stress and velocity do coincide near the surface but that the angle between the 
two is large in the outer part of the flow. 

In the outer layer, Johnston’s measured shear stress vector, figure 4 (c), changes 
direction in the opposite sense from that predicted. It is very difficult to see why 
the shear stress vector should rotate in the opposite direction to the velocity 
gradient vector : the present calculation method predicts that it should merely 
lag behind the velocity gradient. The discrepancies in shear stress angle are only 
a few degrees and may possibly be attributed to experimental error (this situation 
is a much more difficult one than a conventional swept wing). The eccentricities 
in the calculations near the wall merely show that the numerical method will not 
cope with such violent pressure gradients : the velocity profile extrapolates 
smoothly to the surface shear stress direction and both are fairly reliable, but the 
change in shear stress direction between the wall and the first calculation point 
is over-estimated. In  the outer layer the velocity vector and velocity gradient 
vector are inclined at  nearly equal and opposite angles to the undisturbed flow 
direction as predicted by inviscid-flow theory (values a t  the outer edge are nearly 
O / O  and are unreliable); closer to the surface the velocity gradient vector is further 
rotated by the shear stress; nearer still to the surface numerical errors appear, 
especially a t  larger x. 

8.4. 62.5” ‘inJinite’ swept wing (Cumpsty & Head 1970) 

The boundary layer separated a t  about 80 yo chord: the measured profiles were 
affected by traverse gear ‘blockage ’, probably because of upstream influence of 
the disturbance caused to the separa.ted flow by the wake of the traverse gear. 
Skin friction was not measured, so that spanwise convergence due to boundary 

28-2 
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growth on the sidewalls cannot be estimated; the quoted sweep angle of 62.5 
degrees is an ‘effective’ angle deduced from the isobars. 

The calculations in figure 5 start from the pressure minimum :calculations by 
Dr B. G. J. Thompson (private communication) using a version of Cumpsty & 
Head’s entrainment method are also shown. It will be noticed that the inclusion 
of a correction for the effects of surface curvature (a ‘centrifugal’ body force) on 
the turbulence makes a, considerable difference to the results. To derive a three- 
dimensional version of the empirical correction formula suggested by Bradshaw 
(1969~)  on the basis of an analogy between the effects of curvature and of 
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FIGURE 4. For legend see facing page. 
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buoyancy, we consider the ‘Richardson’ number in the form Ri = (Brunt- 
Vaisala frequency/turbulence To calculate the Brunt-Vaisala 
frequency, wBv, we want the radius of curvature of a streamline in a plane normal 
to the surface, R,, and the velocity along that streamline, Us: then 

W i V  = 21U,/R,21 (av,/aY) R,. 

On a developable surface we can simply take U, to be the component of velocity 
normal to the generators, U ,  and R, to be the radius of curvature in a plane 
normal to the generators, R. For the turbulence frequency we take the resultant 
velociby gradient or, better, l~ /p(&/L.  Thus the ‘Richardson’ number is, to first 

As in two dimensions we use the ‘Richardson’ number to divide L by the factor 
1 + 7Ri (on a convex surface) derived from meteorological data. The effects of the 
curvature correction in figure 5 are large enough to cast doubt on the accuracy 
of the &&-order formula used here-which is itself rather speculative-so that 
the final conclusion is that the predictions of the calculation method are, at  
worst, not incompatible with Cumpsty & Head’s results, particularly the separa- 
tion position, which was measured in the absence of the traverse gear. Thompson’s 
calculation does not contain any curvature correction and would presumably 
change as much as the present calculation if a correction were inserted: its 
agreement with the present calculation with curvature correction is fortuitous. 

y, in. 

FIGURE 4. 45” ‘ infinite’ forward-facing step (Johnston 1970). (a) Surface cross-flow angle 
(with respect to tunnel axis). 0, experiment; -, calculation. (b)  Rlagnitude of surface 
shear stress (V,, is velocity far upstream). 0, experiment; -, calculation. ( c )  Yaw angles 
4.1 in. upstream of step. Solid symbols, experiment; open symbols, calculation. 0, direction 
of velocity; 0, direction of shear stress; A ,  direction of velocity gradient. 
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8.5. Demonstration test cases of Cumpsty & Head ( 1 9 6 7 ~ )  

These are Cumpsty & Head’s cabuZutions, with a constant linear gradient of 
chordwise velocity (‘k = 0.25’) and varying sweep angles. The object of the 
comparison is to  show that, as in $8.4,  the present calculation method disagrees 
fairly strongly with the ‘entrainment’ method. Part of the disagreement on 
separation position (figure 6 ( a ) )  may be due to  the crudity of the present 
numerical method, but the monotonic trend of the present results is more 
plausible than that shown by the ‘entrainment ’ calculations, and figure 6 ( c )  

0.1 0.2 0.3 0.4 0-5 0.6 0.7 
S/C 

0.003 

0.002 
H 
0‘ 

0.00 1 

SIC 

FIGURE 5. For legend see facing page. 
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shows that the two sets of predictions differ considerably even near the start of 
the calculation, especially for the larger sweep angles. Dr J. F. Nash has informed 
me that his version of the present calculation method, using a more refined 
numerical scheme but assuming that the direction of the shear stress coincides 
with that of the velocity gradient, shows a monotonic trend similar to that in 
figure 6 (a) .  

A plausible explanation for the increasing disagreement between the entrain- 
ment method and the present method for large cross-flows is that Cumpsty & 
Head assume the entrainment to depend solely on the profile of the velocity 
component in the local free stream direction. Now it was shown by Bradshaw 
et al. (1967) that in two-dimensional flow the entrainment velocity correlates 
quite well on Tmax/Ul,  and according to the general argument that the scalar 
properties of the turbulence will be unaltered by moderate three-dimensionality 
the entrainment in three dimensions should be roughly 10 ]Tmax/pU1I :an analogous 
result would follow from Horton's (1969) correlation based on T at y = 0.56. 
Supposing that the entrainment relation used by Cumpsty & Head is exactly 
correct in two dimensions, it will be an underestimate in three dimensions 
because Tmax is necessarily larger than the component of Tmax in the local free- 
stream direction by an amount that increases with cross-flow (this argument is of 
course rather loose). 

The streamwise shape parameter (figure 6(d)) has much lower values at 
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FIQURE 5. 62.5" ' infinite' swept wing (Cumpsty & Head 1969). S/C is distance normal to 
leading edge (origin near pressure minimum). 0, experiment with slender traverse gear; 
A . exneriment, with e d i e r  traverse mar: n. na.lnulation wit,hont, rtiirvn.t.nm wwreet,inn. 

0 ,  calculation with curvature correction, X , calculation by entrainment method 
(Thompson). (a )  Surface cross-flow angle B (with respect to local free-stream direction). 
( b )  Chordwise component of surface shear stress (no experimental data: separation at 
8/c = 0.66). ( e )  Streamwise shape parameter. 
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separation than in two-dimensional flow, the effect being even larger in the 
present calculations than in those of Cumpsty & Head. There is no real signi- 
ficance in this parameter when there is such a large angle between the local free 
stream and the flow near the wall: the shape parameter based on the velocity 
component normal to the generators takes values of 3 or more a t  separation. 

The variation of crossflow angle with sweep angle (figure 6 ( b ) )  is odd a t  first 
sight, but becomes plausible when one remembers that at sweep angles near 90" 

Sweep angle, degrees 

0 0.5 1 .o 1.5 2.0 

X 

FIGURE 6. For legend see facing page. 
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0 0.5 

X 

X 

FIGURE 6. ' Infinite ' swept wing demonstration calculations of Cumpsty & Head (1967 a )  
' k = 0.25'. 2 is dimensionless distance meas~~red normal t o  leading edge. Solid symbols, 
Cumpsty-Head calculations (entrainment method); open symbols, present calculations. 
(a )  Separation position a t  diffcrent sweep angles. ( b )  Surface cross-flow angle p (with respect 
tolocal free-streamdirection). n , 1 7 . 5 "  sweep; x ,35O; A, 52.4". Last symbol is at separation 
point in each case. ( c )  Chordwise component of surface shear stress. 0, zero sweep; v , lo 
(near separation only); 0, 17.5"; x , 35O; A ,  62.5". (d )  Streamwise shape parameter (for 
symbols see figure 6(c)).  
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the cross-flow is always small, even a t  separation, and that at very small sweep 
angles the cross-flow angle is small except very near separation, where it rises to 
nearly 90". I n  the limiting case of two-dimensional flow the cross-flow angle a t  
separation is indeterminate (010): in practical cases.it toill rise to 90" because of 
manufacturing imperfections or non-uniformity of the tunnel stream direction. 
Although the cross-flow angle is the simplest measure of three-dimensional 
effects it depends on the ratio of the components of surface shear stress normal 
and parallel to the local free stream, and we saw in Q 2 that perpendicular com- 
ponents of shear stress are quite loosely coupled so that large variations in their 
ratio have no great physical significance. 

8.6. Attachment line $ow 

The ordinary differential equations (18)-(22) have been solved for a sample case, 
C* = 3 x  105.  There are no cross-flow measurements for comparison, but the 
results (figure 7 )  are included here for use in starting calculations by the main 
method a t  a point just behind the leading edge. For simplicity, we used Runge- 
Kutta integration starting from guessed values of T and rz, implying values of 
S and W from the logarithmic law, a t  y = O +  (actually about 0.036). The initial 
values, and the bcundary-layer thickness chosen t o  scale L and G ,  were adjusted 
by trial and error until the outer boundary conditions were satisfied: the behaviour 
near the outer edge of W and S ,  particularly the latter, was very sensitive to the 
choices of T, and rzw, which meant that T, and r2, could soon be found quite 
accurately. The results confirm the finding of Cumpsty & Head that r,/ W! is a 
little lower than in a two-dimensional boundary layer in zero pressure gradient 
at the same momentum-thickness Reynolds number. The T profile looks like 
the shear stress profile in a highly-accelerated two-dimensional boundary layer. 
The rate of increase of wall streamline angle with x is about 1.3 times the rate of 
increase of external streamline angle. The quantitative results a t  this low 
Reynolds number (about 500 based on momentum thickness) are not as accurate 
as a t  higher Reynolds numbers because the method does not take account of 
viscous effects on the outer layer (Coles 1962, appendix A):  further work on this 
is in progress. Cumpsty & Head's calculations, based on an empirical entrainment 
relation, agree rather better with their measurements of the velocity component 
along the leading edge than do the present calculations. The differences between 
the calculated and experimental W profiles (figure 7) are rather too large to be due 
to  any likely error in calculating the cross-flow (for which no experimental profiles 
are available): the remaining possibilities are numerical or experimental error or 
the effect of low Reynolds numbers: the long 'tail' on the experimental profile 
(small wake componentsee Coles 1962) suggests the last-named cause, although 
as mentioned above the outer part of the calculated profile is rather uncertain. 

9. Conclusions 
The two-dimensional calculation method of Bradshaw et al. (1 967), based on an 

empirical shear stress equation, has been extended to three dimensions (two 
components of shear stress) without using more empirical data (strictly, data 
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are needed to establish the vector character of the diffusion term but the present 
quasi-scalar approximation should serve for engineering calculations). Such 
extensions of the basic method seem to be relatively straightforward (Bradshaw 
1970), because of the close relation between the empirical shear stress equation 
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FIGURE 7. Attachment-line bonndary layer ( z  axis along leading edge) 

C* = W:/(vdUJdx) = 3 x 105. 

( a )  Velocity profile components. ---, W/W, (experimental; Cumpsty &Head 1969); 0, W/W, 
(calculated); x , (aU/az)/(aU,/ax) (calculated). ( 6 )  Calculated shear-stress profile components. 
0,7*/pw:; x I l a r , / a x ) / ( p W : a ~ , / ~ ~ ) .  
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and the exact (but insoluble) shear stress equation derived from the Navier- 
Stokes equations. The shear-stress equations reduce to the mixing length formula 
(direction of shear stress equals direction of velocity gradient) when transport 
and diffusion terms are small: since this is expected to be the case near the surface 
the mixing length formula is justified here, and inner law profiles deduced from 
i t  can be used for the inner boundary condition, as in two-dimensional flow, with 
some reservations about its behaviour in especially strong pressure gradients. 
Agreement with experiment in the available test cases for infinite swept wings 
(an adequately general case as far as the turbulence is concerned) is within the 
likely uncertainties of the data and of the present computer program, which is 
expected to show some inaccuracy very close to separation. The extension to  the 
fully three-dimensional and/or compressible case is solely a numerical problem : 
no extra data are needed and no deterioration in the accuracy is expected. The 
method is intended only for flows to  which the boundary-layer approximation 
applies-that is, where streamwise and spanwise velocity gradients are small 
compared to those normal to the surface: flows along corners and edges are 
specifically excluded. 

I am grateful to Dr S. C. Crow, Prof. J. P. Johnston and Dr D. W. Martin for 
helpful discussions on three-dimensional flows. I am indebted to Mr J. Laws for 
running the computer and to  him and to  Mr D. H. Ferriss for advice on pro- 
gramming. Mr Ferriss also programmed and ran the attachment-line calculations. 
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